SunLab Molten-Salt Thermal Storage Tests

James E. Pacheco

Team Members:

Mary Jane Hale, Hank Price, Bill Kolb, Vahab Hassani, Dan Blake, Steve Showalter, Kye Chrisman, Jim Grossman, Darrell Johnson, David Johnson, JJ Kelton, Earl Rush, Steve St. Laurent

Approach

- Near-Term Storage
 - Emphasis on indirect, molten-salt systems (two tank and thermocline)
 - Development and Testing: prototype at Sandia
 - Analysis: finite difference and CFD for thermocline, annual

Why Are We Interested in Molten Salt Thermocline Systems?

- Potentially lower cost than other options (currently \$25-\$35/kWh)
- Simple system design
- Compact, more efficient
- Delivers a large portion of its energy at nearly constant outlet temperature
- Experience from Solar One's thermocline
- Experience with molten salt

How Does A Thermocline Work?

Discharging and Charging

Discharging

Charging

Temperature Profiles

Candidate Filler Materials

Name Formula

Alumina Al2O3

Corundum* Al2O3

Bauxite* AlOx(OH)z

Witherite* BaCO3

Barite* BaSO4

Marble* CaCO3

Fluorite* CaF2

Anhydrite* CaSO4

Taconite* Fe2O3,Fe3O4

Ilmenite* FeTiO3

Magnesite* MgCO3

Silicon carbide SiC

Cassiterite*SnO2

Hydroxyapatite Ca5(PO4)3

(OH,F,CI)

Fluorapatite Ca5(PO4)3(OH,F,CI)

Limestone CaCO3

Quartzite SiO2

What Are the Technical Risks

- Compatibility of filler materials with molten salt
- Unproven concept
- Difficulty working with nitrate salt (freezing)
- Danger of having a fuel (Therminol) next to an oxidizer (nitrate salts)

Near-Term Thermal Storage Development Activities

- Isothermal compatibility tests
 - Objective: Evaluate potential filler materials
 - 17 candidate materials
 - Measure weight loss in nitrate salt for 1000 h
 - Analyze salt chemistry
 - Status: Complete 10h, 100h, and 1000h tests. Salt analysis partially completed.

Barite: Before and After 100 h Witherite: Before and After 100 h Taconite: Before and After 100 h

NM Limestone: Before and After 100 h

Quartzite: Before and After 100h

Near-Term Thermal Storage Development Activities (Continued)

Thermal Cycling Test

- Objective: Evaluate mechanical integrity of best candidate filler materials
- Cycle with flowing salt between
 290 C and 400 C
- Status: Completed 360 cycles on Taconite, Limestone and Marble, 550 cycles on Quartzite.
- Limestone did not hold up to thermal cycling.
- Marble shows possible recrystalization.
- Taconite and Quartzite held up well. Currently testing Silica sands.

Near-Term Thermal Storage Development Activities (Continued)

Salt Safety Tests:

- Objective: Evaluate reaction of Therminol oil with nitrate salt in the event of a breach of the salt-to-oil heat exchanger
- Introduced Therminol into beaker of nitrate salt at 400 C:
 1) on surface of salt, 2) below surface, 3) trapped in scintillation vial held below surface, and 4) spark above vapor tapped above salt
- Results:
 - Therminol rapidly boiled off
 - No evidence of reaction with salt
 - Vapor ignited in test 4 (as

Near-Term Thermal Storage Development Activities (continued)

- Engineering-Scale Thermocline Test
 - Objective: Verify operation of a small engineering-scale thermocline (capacity, operability, temperature gradient).
 Compare with modeled behavior.
 - 1.5 MWh capacity (3 m diameter x 6 m tall)
 - Heat input simulated with propane heater, heat rejection with air-blast cooler
 - Filler material and salt mixture TBD
 - Status: System designed and laid out. Tank fabricated and mounted. Heater being refurbished. Cooler mounted. Piping installed. Testing planned to begin this summer.

